Wearable Pain Management Devices: A Non-Invasive Alternative

Wearable Pain Management Devices: A Non-Invasive Alternative

AI Health Tech

Pain is more than just a physical sensation—it’s a complex experience that can dramatically alter your daily life. Chronic pain affects almost 33% of adults, impacting their quality of life and daily activities. As traditional pain management methods often fall short, wearable pain management technologies offer hope for anyone struggling with ongoing pain.

These smart devices can:

  • Track pain signals
  • Provide quick relief
  • Help you understand your pain better

Let’s see how.

Contents

Chronic Pain and Wearable Technologies

Pain closeup word in dictionary

Types of chronic pain and pain conditions

Chronic pain can stem from various conditions, each presenting unique challenges:

  • Fibromyalgia
  • Lower back pain
  • Multiple sclerosis (MS)
  • Rheumatoid arthritis
  • Neuropathic pain
  • Endometriosis
  • Migraines

woman holding her knee radiating in pain

Along with different conditions that cause chronic pain, there are different types of chronic pain:

  • neuropathic (nerve) pain – related to nerve damage
  • nociceptive pain – pain caused by an injury, inflammation, or pressure
  • somatic pain – pain that starts in your face, limbs, or muscles
  • visceral pain – pain from the internal organs with sensory nerves

Problems with traditional pain management

Timed pill box

Traditional pain treatments often rely on medications, physical therapy, and lifestyle modifications. However, these methods have drawbacks:

  1. Medication side effects
  2. The risk of addiction
  3. Inconsistent pain relief
  4. Lack of personalization (one-size-fits-all approach)

Only about 17% of people living with chronic pain get enough pain relief from traditional treatments.

For example, Non-steroidal anti-inflammatory drugs (NSAIDs) have limited effectiveness in treating chronic pain and carry potential serious adverse effects, including an increased risk of heart attack or stroke. Opioids can be effective for short-term pain relief, but they have limited long-term effectiveness, and carry significant risks of addiction and misuse.

How wearable technologies detect and address pain

Wearable technologies offer a new approach to pain management:

A study published in the Interactive Journal of Medical Research reported that wearable devices improved pain management.

The science behind targeted pain relief

Wearable pain management devices use various scientific principles to provide targeted relief:

One example is Transcutaneous Electrical Nerve Stimulation (TENS), which works to reduce nociceptor activity and unwanted pain sensations.

Research from NXSTIM demonstrated that its TENS wearable device EcoAI reduced pain intensity for 92% of study participants.

Patient-reported outcomes and effectiveness

Wearable pain management technologies have shown promising results in patient-reported outcomes:

  • Improved pain control
  • Reduced medication use
  • Enhanced quality of life
  • Increased physical activity

A study on Spinal Cord Stimulation (SCS) therapy showed significant improvements in pain intensity and quality of life.

Types of Wearable Pain Management Devices

The market for wearable pain management devices has expanded rapidly, offering various options for different kinds of pain and patient needs.

Transcutaneous electrical nerve stimulation (TENS) devices

Electrode pads on knee

TENS devices use low-voltage electrical currents to provide pain relief. These wearable units typically consist of:

  • A small, battery-powered device
  • Electrode pads
  • Adjustable intensity settings

The FDA approved the TensWave pain relief device, designed to be portable and user-friendly, to alleviate pain without medication.

Compression and support wearables

Compression bandage in black

Compression garments and support devices can be helpful for conditions like arthritis or sports-related injuries. They help manage pain by:

  • Improving blood circulation
  • Reducing inflammation
  • Providing joint stability

Research in the Arthritis Research and Therapy showed that a soft knee brace helped reduce pain, improve walking speed, and increase confidence for people with knee osteoarthritis.

Smart patches and biosensors

Woman with patch on her arm

These advanced wearables use technology to:

  • Monitor physiological signals
  • Detect pain patterns
  • Deliver targeted pain relief

For example, a DGIST research team has developed a smart patch capable of real-time biometric signal monitoring and drug delivery. This level of continuous monitoring and immediate response is impossible with traditional pain management methods.

Electromagnetic therapy devices

Electromagnetic therapy wearables use pulsed electromagnetic fields (PEMF) to:

  • Reduce inflammation
  • Promote tissue healing
  • Alleviate pain

These devices can be effective for conditions like chronic lower back pain. Research has found that PEMF therapy reduced chronic lower back pain intensity in study participants.

Neurostimulation wearables

These devices target specific nerves to interrupt pain signals and provide relief. They can be used for various chronic pain conditions, including:

A narrative review reported that a neurostimulation device reduced migraine pain within two hours.

Technology Behind Pain Relief Wearables

The effectiveness of wearable pain management devices relies on advanced technologies that work together to detect, analyze, and address pain.

Sensor technologies and pain detection

Wearable sensors measure body signals to understand how each person experiences pain. This helps create personalized pain treatment plans.

Wearable devices use various sensors to monitor physiological signals associated with pain:

AI-powered devices are changing how we handle pain. They use sensors to track pain signals in the body, along with AI algorithms to figure out the best way to treat each person’s pain. These tools can measure things like heart rate and skin changes to understand pain levels and suggest personalized treatments.

Electrical stimulation mechanisms

Electrical stimulation devices work by:

  1. Blocking pain signals
  2. Stimulating endorphin release
  3. Improving local blood circulation

Research published in the Scientific Reports showed that electrical stimulation wearables reduced chronic pain and improved the walking gait of participants.

Biofeedback and pain tracking

Biofeedback is a method that helps you learn more about how your body works. By using special electronic devices, you can track things like your heart rate, muscle tension, or breathing. The main goal is to teach you how to control these body functions on purpose, almost like learning to control a muscle you didn’t know you could move before.

Biofeedback features in wearable devices help patients:

  • Identify pain triggers
  • Track pain patterns
  • Learn pain management techniques

By providing real-time feedback on physiological responses, these devices can empower you to take a more active role in managing your pain.

Machine learning and personalized pain management

AI and machine learning algorithms enhance the effectiveness of wearable pain management devices by:

  • Analyzing individual pain patterns
  • Predicting pain episodes
  • Optimizing treatment parameters

For instance, a study on digital biomarkers collected from wearables during SCS treatment showed that machine learning models can predict pain levels with an accuracy of 76.8%.

Integration with smartphone applications

Most wearable pain management devices connect to smartphone apps, offering:

  • Real-time pain tracking
  • Treatment customization
  • Data sharing with healthcare providers

In one study, a pain management app helped participants track and manage chronic pain. Those experiencing higher pain intensity and disability found it the most valuable. Some users appreciated the tracking features, while others found frequent monitoring intrusive.

Integrating apps into your healthcare regime promotes more comprehensive pain management and better communication between you and your healthcare team.

Clinical Applications and Research

Wearable pain management technologies have shown promise in various clinical settings and for different types of pain.

Pain management for specific conditions

Researchers have studied wearable devices to see how effective they are when managing pain associated with:

  • Fibromyalgia
  • Osteoarthritis
  • Lower back pain
  • Neuropathic pain

For example, a study on SCS therapy showed significant improvements in pain intensity and quality-of-life metrics for people with chronic pain conditions.

Sports injury recovery

Athletes and sports medicine professionals turn to wearable pain management devices for:

  • Faster recovery from injuries
  • Reduced reliance on pain medications
  • Improved rehabilitation outcomes

Compression wearables for instance, have shown promise in reducing pain and improving function in patients with knee osteoarthritis.

A study in BMC Sports Science, Medicine and Rehabilitation used advanced tracking devices like accelerometers, GPS, and force plates to monitor athletes’ performance. By collecting data on things like distance, speed, and impact, coaches can spot early signs of fatigue and prevent injuries. The technology can help sports coaches decide when to push athletes harder, and when to let them rest.

Chronic illness support

Wearable pain management technologies offer valuable support for people with chronic illnesses by:

  • Providing continuous pain relief
  • Reducing medication side effects
  • Improving quality of life

The integration of these devices into chronic pain management strategies can lead to more personalized and effective treatment plans.

Researchers frequently use wearable devices in clinical trials to test their effectiveness.

Rehabilitation and physical therapy

Wearable pain management devices are increasingly integrated into rehabilitation programs, offering:

  • Targeted pain relief during exercises
  • Progress tracking
  • Improved compliance (people following through with doctor instructions)

This integration can lead to more effective rehabilitation outcomes and faster recovery times.

A clinical trial in the Archives of Physical Medicine and Rehabilitation showed that TENS alone or combined with exercise or physical therapy, helped reduce knee pain and improve mobility. The combined therapy was particularly effective, showing a significant decrease in light-intensity activity time and potentially lowering psychological barriers to exercise. The results suggest this approach could be a valuable strategy for people struggling with knee pain and sedentary behavior.

Workplace ergonomics and injury prevention

Healthcare providers use wearable technologies in occupational health settings to:

  • Prevent workplace injuries
  • Manage chronic pain for employees
  • Improve ergonomics (physical comfort)

A study in Advanced Intelligent Systems found that implementing wearable pain management devices in the workplace can alleviate work-related pain and injuries.

By providing real-time feedback and pain management, these devices can help create safer and more comfortable work environments.

How to Choose the Right Wearable Pain Management Solution

With numerous options available, you should carefully consider several factors to select the right wearable pain management device for you.

Considerations when selecting a device

When choosing a wearable pain management solution, make note of its:

  1. Functions that help relieve your type of pain condition
  2. Device features and functionality
  3. Ease of use and comfort
  4. Battery life and portability
  5. Clinical evidence supporting its effectiveness

It’s important to consult with your healthcare provider to determine which device is best suited for your specific needs and condition.

Cost and insurance considerations

The cost of wearable pain management devices can vary widely. Consider:

While these devices may have higher upfront costs, they could lead to long-term savings in pain-related healthcare expenses. Research published in Cureus showed that despite higher upfront costs, wearable pain management devices resulted in lower overall pain-related healthcare expenses for participants.

User experience and comfort

The effectiveness of a wearable pain management device often depends on whether you use it correctly and consistently, and your comfort. Look for devices that offer:

  • Adjustable settings
  • Lightweight and discreet design
  • Easy-to-use controls

85% of the 90% of participants in a 2020 pilot study who used a device more than half of the study period reported high user satisfaction scores. This suggests that you’re more likely to use a device that’s comfortable and easy to use consistently, leading to better pain management outcomes.

Clinical validation and research

When selecting a wearable pain management device, prioritize those with strong clinical evidence that shows they’re effective. Look for:

Personalization and adaptability

Choose a device tailored to your specific needs and pain patterns. Look for features such as:

Future of Wearable Pain Management

The field of wearable pain management is rapidly evolving, with exciting developments on the horizon.

Emerging technologies

Future wearable pain management devices may incorporate:

These emerging technologies could significantly improve pain management outcomes in the coming years.

A report in Frontiers in Bioengineering and Biotechnology predicts that these emerging technologies will improve pain management outcomes.

Artificial intelligence integration

AI plays an important role in wearable pain management, offering:

For example, an automated pain recognition system using AI holds promise as an unbiased method to detect pain before, during, and after surgery.

Personalized medicine approaches

The future of wearable pain management includes highly personalized solutions, such as:

These personalized approaches could lead to significantly better health outcomes and more effective pain management strategies.

Potential for home-based pain management

Advancements in wearable technologies may lead to more comprehensive home-based pain management solutions, offering:

This shift towards home-based care can reduce hospital visits and improve the overall quality of life for chronic pain patients.

Research in Pain Therapy suggests that home-based wearable pain management devices reduce hospital visits for chronic pain.

Interdisciplinary research developments

The future of wearable pain management will likely involve collaboration across various fields, including:

This interdisciplinary approach could lead to breakthroughs in pain management, which could decrease how many people have chronic pain in the coming years.

Wearable pain management represents a promising frontier in healthcare technology. As devices become more sophisticated, personalized, and accessible, individuals suffering from chronic pain can look forward to more targeted, non-invasive relief strategies. The future of pain management is not just about treating symptoms, but understanding and addressing pain at its source.

References

AI pain recognition system could help detect patients’ pain before, during and after surgery. (2023). American Society of Anesthesiologists. Retrieved from https://www.asahq.org/about-asa/newsroom/news-releases/2023/10/ai-pain-recognition-system

Alberts, N.M., Leisenring, W., Flynn, J.S., Whitton, J., et al. (2020). Wearable Respiratory Monitoring and Feedback for Chronic Pain in Adult Survivors of Childhood Cancer: A Feasibility Randomized Controlled Trial From the Childhood Cancer Survivor Study. JCO Clinical Cancer Informatics, 4. doi.org/10.1200/CCI.20.00070

Andrade, R., Duarte, H., Pereira, R., Lopes, I., Pereira, H., Rocha, R., & Espregueira-Mendes, J. (2016). Pulsed electromagnetic field therapy effectiveness in low back pain: A systematic review of randomized controlled trials. Porto Biomedical Journal, 1(5), 156. doi.org/10.1016/j.pbj.2016.09.001

Bara, R. O., Lee, M., Phan, T., Pacheco, M., Camargo, A. F., Kazmi, S. M., Rouzi, M. D., Modi, D., Shaib, F., & Najafi, B. (2024). Transcutaneous electrical nerve stimulation for fibromyalgia-like syndrome in patients with Long-COVID: A pilot randomized clinical trial. Scientific Reports, 14(1), 1-11. doi.org/10.1038/s41598-024-78651-5

Beyond Traditional Healing: How AI Enhances Biofeedback for Pain Management. (2023). Retrieved from https://ospinamedical.com/orthopedic-blog/beyond-traditional-healing-how-ai-enhances-biofeedback-for-pain-management

Casarin, S., Haelterman, N. A., & Machol, K. (2024). Transforming personalized chronic pain management with artificial intelligence: A commentary on the current landscape and future directions. Experimental Neurology, 382, 114980. doi.org/10.1016/j.expneurol.2024.114980

Chen, J., Jin, T., & Zhang, H. (2020). Nanotechnology in Chronic Pain Relief. Frontiers in Bioengineering and Biotechnology, 8, 557957. doi.org/10.3389/fbioe.2020.00682

Chronic pain: Medication decisions. MayoClinic. Retrieved from https://www.mayoclinic.org/chronic-pain-medication-decisions/art-20360371

Cox, A. (2024). Insights into Emerging Technologies in Pain Medicine. Retrieved from https://www.managedhealthcareexecutive.com/view/insights-into-emerging-technologies-in-pain-medicine

Cudejko T, van der Esch M, van der Leeden M, van den Noort JC, Roorda LD, Lems W, Twisk J, Steultjens M, Woodburn J, Harlaar J, Dekker J. The immediate effect of a soft knee brace on pain, activity limitations, self-reported knee instability, and self-reported knee confidence in patients with knee osteoarthritis. (2017). Arthritis Research and Therapy;19(1):260. doi: 10.1186/s13075-017-1456-0

Deswal, P. (2024). NXTSTIM’s wearable nerve stimulation device helps manage long-term pain. Clinical Trials Arena. Retrieved from https://www.clinicaltrialsarena.com/news/nxtstims-wearable-nerve-stimulation-device-helps-manage-long-term-pain/

Different Types of Chronic Pain. (2020). Southern Pain and Neurological. Retrieved from https://southernpainclinic.com/blog/different-types-of-chronic-pain/

El-Tallawy, S.N., Pergolizzi, J.V., Vasiliu-Feltes, I., et al. (2024). Innovative Applications of Telemedicine and Other Digital Health Solutions in Pain Management: A Literature Review. Pain and Therapy, 13, 791–812. doi.org/10.1007/s40122-024-00620-7

Gagnon, M.P., Ouellet, S., Attisso, E., Supper, W., Amil, S., Rhéaume, C., Paquette, J.S., Chabot, C., Laferrière, M.C., Sasseville, M. (2024). Wearable Devices for Supporting Chronic Disease Self-Management: Scoping Review. Interactive Journal of Medical Research,3:e55925. doi: 10.2196/55925

How Wearable Devices Are Shaping the Future of Chronic Pain Management. Pain Mgmt Advancements. Retrieved from https://advancementsinpainmanagement.com/therapeutic-care/patient-monitoring/how-wearable-devices-shaping-chronic-pain-management/

Huhn, S., Axt, M., Gunga, C., Maggioni, M. A., Munga, S., Obor, D., Sié, A., Boudo, V., Bunker, A., Sauerborn, R., Bärnighausen, T., & Barteit, S. (2022). The Impact of Wearable Technologies in Health Research: Scoping Review. JMIR MHealth and UHealth, 10(1), e34384. https://doi.org/10.2196/34384

Johnson, M. I., & Jones, G. (2017). Transcutaneous electrical nerve stimulation: current status of evidence. Pain Management, 7(1), 1-4. Retrieved from Transcutaneous electrical nerve stimulation: current status of evidence

Koch, R. Researchers discover localised pain relief using known chemical reaction. (2024). University of Adelaide. Retrieved from https://www.adelaide.edu.au/newsroom/news/list/2024/11/04/researchers-discover-localised-pain-relief-using-known-chemical-reaction

Management of Chronic Pain. (2023). National Commission on Correctional Health Care (NCCHC). Retrieved from  https://www.ncchc.org/position-statements/management-of-noncancer-chronic-pain-2023/

Non-Traditional Pain Management. (2023). ProCare Rx HospiceCare. Retrieved from https://www.procarehospicecare.com/non-traditional-pain-management

Nowosielski, B. Biofeedback Shows Promising Results in Treating Chronic Pain. (2025). Retrieved from https://www.drugtopics.com/view/biofeedback-shows-promising-results-in-treating-chronic-pain

Objective wearable measures correlate with self-reported chronic pain levels in people with spinal cord stimulation systems. (2023). npj Digital Medicine. Retrieved from https://www.nature.com/articles/s41746-023-00892-x

Patel, V., Chesmore, A., Legner, C. M., & Pandey, S. (2022). Trends in Workplace Wearable Technologies and Connected-Worker Solutions for Next-Generation Occupational Safety, Health, and Productivity. Advanced Intelligent Systems, 4(1), 2100099. doi.org/10.1002/aisy.202100099

Rebelo, A., Martinho, D.V., Valente-dos-Santos, J. et al. (2023). From data to action: a scoping review of wearable technologies and biomechanical assessments informing injury prevention strategies in sport. BMC Sports Science, Medicine and Rehabilitation, 15, 169 doi.org/10.1186/s13102-023-00783-4

Ross, E. L., Jamison, R. N., Nicholls, L., Perry, B. M., & Nolen, K. D. (2020). Clinical Integration of a Smartphone App for Patients With Chronic Pain: Retrospective Analysis of Predictors of Benefits and Patient Engagement Between Clinic Visits. Journal of Medical Internet Research, 22(4), e16939. doi.org/10.2196/16939

Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. (2024). Cyborg and Bionic Systems. Retrieved from https://spj.science.org/doi/10.34133/cbsystems.0160

Smart patch combines real-time health monitoring and drug delivery. (2025). Medical Xpress. Retrieved from https://medicalxpress.com/news/2025-02-smart-patch-combines-real-health.html

Spiegel, B., Fuller, G., Lopez, M., Dupuy, T., Noah, B., Howard, A., Albert, M., Tashjian, V., Lam, R., Ahn, J., Dailey, F., Rosen, B. T., Vrahas, M., Little, M., Garlich, J., Dzubur, E., IsHak, W., & Danovitch, I. (2019). Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS ONE, 14(8), e0219115. doi.org/10.1371/journal.pone.0219115

Tepper, S.J., McAllister, P., Monteith, T. (2024). Update on Noninvasive Neuromodulation for Headache Treatment. Practical Neurology (US).;23(4):23-28.

Trafton, A. Wearable patch can painlessly deliver drugs through the skin. (2023). Massachusetts Institute of Technology. Retrieved from https://news.mit.edu/2023/wearable-patch-can-painlessly-deliver-drugs-through-skin-0419

Transcutaneous Electrical Nerve Stimulation for Pain Control. (2024). Head & Neck Pain Clinic. Retrieved from https://mhnpc.com/2024/10/28/transcutaneous-electrical-nerve-stimulation-for-pain-control/

Weatherly, S., McKenna, T., Wahba, S., Friedman, A., Goltry, W., Wahid, T., Abourahma, H., Lee, K., Rehman, A., Odeh, A., & Costin, J. (2024). Effectiveness of Digital Health Interventions (DHI) in Chronic Pain Management: A Scoping Review of Current Evidence and Emerging Trends. Cureus, 16(10), e72562. doi.org/10.7759/cureus.72562

Why Traditional Pain Management Doesn’t Work for Many With Chronic Pain. Michigan Integrative Health. Retrieved from https://michiganih.com/why-traditional-pain-management-doesnt-work-for-many-with-chronic-pain/

Yamada, K., Shimizu, H., Doi, N., Harada, K., et al. (2025). Usefulness and Safety of a Wearable Transcutaneous Electrical Nerve Stimulation Device for Promoting Exercise Therapy in Patients With Chronic Knee Pain: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 106 (2), 167-176. doi: 10.1016/j.apmr.2024.08.021

Zhu, Y., Yao, Y., Kuang, R., Chen, Z., Du, Z., & Qu, S. (2023). Global research trends of nanotechnology for pain management. Frontiers in Bioengineering and Biotechnology, 11, 1249667. https://doi.org/10.3389/fbioe.2023.1249667

Chronic Pain Management Apps: The Best Digital Health Tools for Relief

Chronic Pain Management Apps: The Best Digital Health Tools for Relief

AI Health Tech Med Tech

Living with chronic pain can be a daily struggle, affecting millions of people worldwide. According to the CDC, an estimated 20.9% of U.S. adults experienced chronic pain in 2021. Fortunately, technology has stepped in to offer innovative solutions, like chronic pain management apps.

These digital assistants are powerful, accessible tools to help pain sufferers track symptoms, manage medications, and find relief. In this article, we’ll discuss chronic pain management apps in detail, outlining the ways they can help improve quality of life for those who experience chronic pain.

Contents

Overview of chronic pain management

First, let’s take a look at the various digital tools available to help manage chronic pain.

Woman wearing a VR headset in a coworking space

Types of digital tools for chronic pain

Many digital tools on the market can help assess and treat chronic pain, and improve how patients access and engage with their care (Rejula et al., 2021):

  • Artificial Intelligence (AI): AI is being used more in healthcare, including for diagnosing and managing treatments. For chronic pain, AI can use data like breathing rate, oxygen levels, and heart rate to estimate pain levels and changes.
  • Remote Patient Monitoring (RPM): Tools like smartphone apps, sensors, and wearable devices can help doctors collect and track patient symptoms between appointments. 
  • Digital therapy: These are devices and methods that give patients frequent advice to improve their behaviors and habits. Most of these use an approach called cognitive behavioral therapy (CBT).
  • Virtual patient engagement: Digital communication tools can help patients be more involved in their care, no matter where they are.

Definition of chronic pain management apps

Senior woman with leg pain in chair

Chronic pain management apps are mobile applications that help people with chronic conditions like diabetes, cancer, and fibromyalgia track and control their pain. They serve as a digital companion, offering features like pain diaries, medication reminders, and educational resources. The main goal is to empower users to take control of their pain management, providing insights that can lead to better health outcomes.

How they’re different from general health apps

While general health apps focus on overall wellness, chronic pain management apps are tailored to address specific pain-related issues. They offer specialized tools like pain mapping and flare-up prediction, which are not typically found in standard health apps.

Key features and functions

Timed pill box

Chronic pain management apps come packed with features to make pain management easier:

  • Pain tracking: Users can log pain episodes, noting intensity, location, and triggers. This helps in identifying patterns and potential triggers.

  • Medication management: Apps often include reminders to take medication, ensuring adherence to prescribed treatments.

  • Educational resources: Many apps offer information on pain management techniques, such as deep breathing exercises and guided meditation.

  • Integration with wearables: Some apps sync with wearable devices to provide real-time data on physical activity and sleep patterns.

Benefits of using digital tools for pain management

Why should you consider using these apps? Here are some benefits:

  • Improved self-management: By tracking pain and related factors, users gain insights into their condition, leading to better management.

  • Better communication: Sharing app data with doctors can lead to more informed treatment decisions.

  • Convenience: Having a digital tool at your fingertips means you can manage your pain anytime, anywhere.

Top Features of Effective Pain Management Apps

When choosing a pain management app, certain features can make a big difference in how well it works. Let’s explore what to look for.

Elderly hands on smartwatch

Pain tracking 

Effective apps allow users to log pain episodes in detail. This includes noting the intensity, duration, and location of pain, as well as potential triggers. A study found that detailed pain tracking can help users identify patterns and adjust their management strategies accordingly (Zhao et al., 2019).

Medication reminders and management

Medication adherence (taking your meds as prescribed) is crucial in pain management. Apps with reminder features ensure users take their medication on time, reducing the risk of missed doses and improving overall treatment effectiveness.

Customizable pain scales and body maps

Customizable features allow users to personalize their pain assessment. This means they can adjust pain scales to better reflect their experiences and use body maps to pinpoint pain locations accurately.

Integration with wearable devices 

Integration with wearables provides real-time data on various health metrics, such as heart rate and activity levels. This data can offer insights into how lifestyle factors affect pain, allowing for more informed management decisions.

Let’s take a closer look at some of the most popular chronic pain management apps available today. These apps offer various features to help users track, manage, and understand their pain better.

Note: Prices listed in this section are accurate as of August 2024. Visit the app’s website to confirm their current pricing.

1. Pathways Pain Relief

Pathways app
Source: Pathways

Pathways Pain Relief is a web-based app created by chronic pain sufferers and pain specialists at Pathway. It aims to help users manage their pain through mind-body therapies and comprehensive pain education.

Key Features:

  • Mind-body pain therapy program

  • Meditation and mindfulness exercises

  • Physical therapy area

  • Pain and wellbeing tracking
ProsCons
Comprehensive approach to pain managementWeb-based only (no mobile app)
Created by pain sufferers and specialistsRequires internet connection
High user rating (4.6/5)

Cost: $79 (flat fee).

Use case

A chronic pain patient looking for a holistic approach to pain management, combining physical therapy, mindfulness, and pain education.

To learn more, visit:

2. Curable

Curable app
Source: Curable

Curable is available on iOS, Android, and web platforms. It was founded by three individuals who recovered from chronic pain and now aim to help others access similar treatments.

Key Features:

  • Mind-body pain therapy program

  • Meditation and mindfulness area

  • Chatbot for personalized guidance
ProsCons
Available on multiple platformsLower user rating compared to some competitors (4.2/5)
Personalized guidance through chat bot
Founded by chronic pain recovery stories

Cost: $11.99 per month.

Use case

Someone interested in exploring mind-body connections in pain management, with a preference for guided, personalized experiences.

To learn more, visit:

3. Manage My Pain

Manage My Pain app
Source: Managing Life

Manage My Pain, an app created by Managing Life, is available on iOS, Android, and web platforms. It focuses on detailed pain tracking and analysis to help users understand their pain patterns.

Key Features:

  • Comprehensive tracking of pain and well-being

  • Export statistics for healthcare providers

  • Easy-to-read charts and graphs
ProsCons
Detailed pain tracking capabilitiesMay be overwhelming for users seeking simpler solutions
Shareable reports for healthcare providers
High user rating (4.4/5)

Cost: $4.99 per month for reports and educational content.

Use case

A patient who wants to keep detailed records of their pain experiences to share with their healthcare team and identify patterns over time.

To learn more, visit:

4. Migraine Buddy

Migraine Buddy app
Source: Migraine Buddy

Migraine Buddy, developed by Aptar Digital Health, is specifically designed for migraine sufferers. Available on iOS and Android, it helps users track and manage their headache and migraine symptoms.

Feedback on Migraine Buddy says the app is great for people with migraines (Gamwell et al, 2021). It lets users share info with doctors, track what causes their migraines, and what helps relieve them. It can also calculate how much migraines affect a person’s daily life. 

Key Features:

  • Migraine tracking and analysis

  • Community support features

  • Educational resources on migraines
ProsCons
Specialized for migraine sufferersNot suitable for other types of chronic pain
Strong community support
Very high user rating (4.6/5)

Cost: $0 for MigraineBuddy; $12.99 per month or $89.99 per year for MBplus.

Use case

A migraine sufferer looking to track their symptoms, identify triggers, and connect with others who have similar experiences.

To learn more, visit:

5. CareClinic

CareClinic app
Source: CareClinic

CareClinic is available on iOS and Android. It offers a comprehensive approach to symptom tracking and treatment planning.

Key Features:

  • Symptom and treatment goal tracking

  • Daily habit monitoring

  • Medication and appointment reminders
ProsCons
Comprehensive tracking of symptoms and treatmentsMay require significant time investment for data entry
Goal-setting features
High user rating (4.6/5)

Cost: Free; they also have monthly and annual plans for premium features.

Use case

A patient managing multiple chronic conditions who needs to track various symptoms, medications, and treatments in one place.

To learn more, visit:

6. PainScale

PainScale app

Boston Scientific Corporation created PainScale, a highly-rated pain management app with a range of features for tracking and managing chronic pain, and educational articles. It’s available on iOS, Android, and the web. 

Gamwell et al (2021) noted that PainScale includes the very helpful techniques for managing pain, and is easy to use for various types of chronic pain. It has a daily diary where users can track their symptoms, triggers, and medications, and can be share this info with doctors. 

Key Features:

  • Pain tracking and analysis

  • Personalized pain management plans

  • Educational resources
ProsCons
Comprehensive pain management featuresLimited information available about cons
Personalized approach
High quality score in research studies

Cost: Free

Use case

A chronic pain patient looking for a well-rounded app that combines tracking, personalized plans, and education.

To learn more, visit:

How to Choose the Right Pain Management App

Selecting the right app can be overwhelming. With so many options available, how do you pick the right app for your needs? Here’s how to make an informed choice.

Woman holding her temples

Assess your specific needs and pain conditions

Start by evaluating your specific pain conditions. Are you dealing with neuropathic pain, or is it more related to a chronic condition? Choose an app that offers features tailored to your needs.

Consider ease of use

An app should be easy to navigate. Look for a user-friendly interface that allows you to access features quickly and efficiently.

Review data privacy and security features

Data privacy is crucial. Ensure the app complies with relevant data protection regulations and offers secure data storage.

Check compatibility with other devices

Make sure the app is compatible with your smartphone, tablet, or wearable devices. Compatibility ensures seamless integration and use.

When comparing these apps, consider what features are most important to you. Do you prefer detailed tracking, or is community support more valuable? Each app offers unique benefits, so choose one that aligns with your needs. Remember to consult with your healthcare provider about incorporating these tools into your overall pain management plan.

Integrating Apps into Your Pain Management Plan

Once you’ve chosen an app, the next step is to make it a regular part of your pain management routine.

Man holding his knee in pain

Work with healthcare providers to use app data effectively

Share app data with your healthcare provider. This collaboration can lead to more informed treatment decisions and better pain management outcomes.

Combine app use with other pain management strategies

Apps should complement, not replace, other pain management strategies. Combine app use with physical therapy, medication, and lifestyle changes for optimal results.

Set realistic expectations for app benefits

Understand that while apps are helpful tools, they are not a cure-all. Set realistic expectations for what an app can achieve in managing your pain.

Tips for consistent app usage and data logging

Consistency is key. Regularly update the app with accurate information to track your progress and adjust your management strategies as needed.

Chronic pain management apps offer a ray of hope for those grappling with persistent pain. These digital tools empower users to take an active role in their pain management, providing valuable insights and support. However, these apps shouldn’t replace professional medical advice. 

By choosing the right app and integrating it into your overall pain management strategy, you can gain a better understanding of your condition and find more effective ways to cope. Embrace these technological advancements and take the first step towards a more manageable pain experience.

References

FDA Authorizes Marketing of Virtual Reality System for Chronic Pain Reduction. (2021). U.S. Food and Drug Adminstration. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-virtual-reality-system-chronic-pain-reduction

Gamwell, K. L., Kollin, S. R., Gibler, R. C., Bedree, H., Bieniak, K. H., Jagpal, A., Tran, S. T., Hommel, K. A., & Ramsey, R. R. (2021). Systematic evaluation of commercially available pain management apps examining behavior change techniques. Pain; 162(3), 856. doi.org/10.1097/j.pain.0000000000002090

Orlovich Pain MD. (n.d.). The Power of Pain Management Apps: A New Frontier in Chronic Pain Relief. Retrieved from https://orlovichpainmd.com/the-power-of-pain-management-apps-a-new-frontier-in-chronic-pain-relief/ 

Rejula, V., Anitha, J., Belfin, R. V., & Peter, J. D. (2021). Chronic Pain Treatment and Digital Health Era-An Opinion. Frontiers in Public Health; 9, 779328. doi.org/10.3389/fpubh.2021.779328

Rikard, S. M., Stahan, A. E., Schmit, K. M., & Guy Jr., G. P. (2023). Chronic Pain Amonf Adults – United States, 2019-2021. MMWR Morb Mortal Wkly Rep 2023;72:379–385. dx.doi.org/10.15585/mmwr.mm7215a1. Retrieved from https://www.cdc.gov/mmwr/volumes/72/wr/mm7215a1.htm

Zhao, P., Yoo, I., Lancey, R., & Varghese, E. (2019). Mobile applications for pain management: An app analysis for clinical usage. BMC Medical Informatics and Decision Making; 19. doi.org/10.1186/s12911-019-0827-7